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Abstract We introduce a special class of monotonic functions with the help of support
functions and polar sets, and use it to construct a scalarized problem and its dual for a vector
optimization problem. The dual construction allows us to develop a new method for gener-
ating weak efficient solutions of a concave vector maximization problem and establish its
convergence. Some numerical examples are given to illustrate the applicability of the method.
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1 Introduction

Let Y be a real normed space, Y’ its topological dual and {-,-) the pairing between them. The
space Y is partially ordered by a pointed and convex cone C € Y with a nonempty interior.
The nonnegative polar cone of C, denoted by C™, is defined by C* := {£ € Y': (£, y) >
0 forall y € C}. Let X be a nonempty subset of a topological vector space, and let f be a
mapping from X to Y. The vector (or multiobjective) optimization problem that we are going
to study in this paper is the following weak maximization problem:

WMax f(x),

st. xe X, (VP)

which means finding a point Xp € X such that f(x) ¢ f(xg) + int C for every x € X. Such
a point Xxg is traditionally called a weak efficient solution and the set of all weak efficient
solutions of (VP) is denoted by S(VP).

In this paper we are interested in finding the whole set S(\VVP) and its image f (S(VP)).
This problem is important in multicriteria decision making, multicriteria design engineering
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and in many other applications (see [8, 18, 20]). To date there exist a huge number of methods
to solve multiobjective problems; the interested reader can find a short description of various
existing methods in the monograph [15]. However, as far as we know, apart from the linear
case, there exist quite few works which offer methods for obtaining the whole solution set
of (VP) and most of the theoretical results that are aimed at doing it are difficult to imple-
ment. In this paper, we wish to present a constructive method to generate the solution set
of problem (VP) when X is a convex set and f is a concave function. It is known that the
entire solution set of a concave vector maximization problem can theoretically be obtained
by maximizing the scalar composite functions € o f on X when & runs over a base A of the
polar cone C*. The choice of a finite subset of A to perform the computing is, however,
so complex that even for linear problems one may never reach the solution set of the vector
problem when that subset grows up to a dense subset of A (see [14] for an example of this
situation and a discussion on some numerical methods of recent literature on finding the
solution sets of linear and nonlinear multiobjective problems, see [2, 3, 5, 9, 16]). The main
idea of our method is the following. First, we construct a sequence of scalarized problems and
their duals, which have simple structure and are easier to deal with. Then, using the duality
relation between the scalarized problems and their duals, we compute the solution sets of the
scalarized problems and show that they are parts of and converge to the solution set of the
vector problem (VP). We would like to underline that, in general, the scalarized problems
are not concave maximization problems, therefore the duality approach of convex analysis
does not apply to them; instead, a new dual construction is proposed which is inspired by
Toland’s dualization (see [17, 19]) and guarantees a zero duality gap.

The paper is organized as follows. In Section 2, a special class of monotonic functions
is studied with help of support functions and polar sets. In Section 3, a dual construction
is proposed and duality relations between a scalarized problem and its dual are established.
Section 4 is devoted to convergence of scalarizing functions and solution sets. In Section
5, an application to solve a concave maximization problem in a finite dimensional space is
given. A new algorithm for generating weak efficient solutions is developed, its convergence
is proved and some small size numerical examples are presented which show the applicability
of the method.

2 Polar setsand monotonic functions

Given a nonempty set A C Y, its support function sa is defined on Y’ by

Sa(§) =sup(&,y) for &€V’
yeA

and the polar set of A is a subset A° C Y’ defined by
A =fEeY sa®) <1}.

Similarly, the support function of a nonempty set M C Y’ is a function sy defined on Y and
the polar set of M is a subset M° C Y.

Let¢: Y — R U {zo0} be a function and let D C Y. We say that ¢ is nondecreasing on
Dify1 =y, +cwith y, y2 € D and c € C implies ¢(y1) > ¢(¥2); and it is increasing on
Dify1 = y» + cwith y;, yo € D and ¢ € intC implies ¢(y1) > ¢(y2).
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Let A be the family of subsets A of Y which satisfy AN C # @. We shall adopt the
following convention

r +oo if O<r or r =+4oo,
—=1-00 if O>r or r =-—o0,
0 if r=0.

Let A be a closed base of CT, thatisCt = {té: £ A, t > 0} and 0 ¢ A. For every
A € A we define a function ga: Y — [0, oo] by

" (&, Y)Jr’
gen Sa®)

ga(y) =

where (£, y)*T = max{(£, y), 0}. This function will play a crucial role in solving problem
(\VVP). Below we establish some of its properties.

Proposition 2.1 Let A € A. Then the following assertions hold:

(i) ga isnondecreasing, lower semicontinuous and sublinear on'Y and coincides with the
support function of the set A° N C+.
(ii) gaisincreasingon C providedthat A isweakly compact and +o0o > SUPzc A SA() > 0.

Proof To prove (i), let &£ € A be given. Being the max function of two nondecreasing,
continuous and linear functionals, the function (&, .)™ is nondecreasing, continuous and sub-
linear. If sa(&) is strictly positive, or equal to +oo, then it is clear that the function ({3 (S> is
né)ngecreasmg, continuous and sublinear. If sa(&) = 0, it follows from our conventlon that
§..)

3] is nondecreasing and sublinear too. This function is no longer continuous, but lower
A

semicontinuous. Then the function ga(.), being the sup function of a family of nondecreas-
ing, sublinear and lower semicontinuous functions, must share the same property. To prove
that ga and sponc+ coincide, let y € Y be fixed. First we show that

gA(Y) < Sponc+(Y) - 21)

To this end, notice that since A° N C* contains the origin, the support function on the right
hand side of (2.1) is nonnegative. Therefore (2.1) will follow if we can show that

(& y)

sa(®) —
for those vectors & € A for which (£, y) > 0. Let & be such a vector. If sa(§) = 0, then
té € A°NCT foreacht > 0. Hence spenc+(Y) > t(£, y) forall t > 0. By this sponc+(Y) =
400 and (2.2) is obtained. If sa(¢) > 0, then % belongs to A° N C™ because £ € A and
sa( § ) =1.Then { §

G3) PR y) < Spenc+ (Y) which is nothing but (2.2).

Now we prove the converse inequality of (2.1). This will be done if we can show that for
every £ € A°N C™ one has inequality (¢, y) < ga(y). Indeed, lett > 0 and £ € A be such
that ¢ = t£. Such t and & exist because A is a base of CT. If (¢, y) is nonpositive, then by
definition (&, y)* = 0 and ga(y) > 0. If (¢, y) is positive, then 0 < sa(¢) < 1 and due to
the homogeneity of sp we derive

< Sponc+(Y) (2.2)

&y &y
SA()  SA(®)

€.y = = ga(y).
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Thus, equality holds in (2.1).
For the second assertion, let y; = y» + c where y, € C and ¢ € intC. It follows from the
hypothesis that

inf (¢, c)
inf .0 > sed >0
geA Sa®) sup sa(é)
EeA
Then we derive
(€, y2+¢C) Ey)t . (&0
= f 9
GO =S Ta®  ~oh sa® elasa® 0P
as requested. O

In the sequel, co(A) denotes the convex hull of A and To(A) denotes its closed convex
hull. We also use the notation cl(A) for the closure of A.

Lemma2.2 For every A € A one has

(i) TO(A®° U (—C)) = C(AU (—C)) = T0(A — C) = cl(A*® — C).
(ii) (A°NC*)° = cl(A® — C).

Proof We observe first that A°> N C+ = (AU (—C))°. Hence
To(AU (—C)) = (AU (—C)*° = (A°NCT)° = To(A*° U (-C)). (2.3)

Furthermore, as0 € C and ANC # ¢, one has AU (—C) € A — C which together with the
inclusion A € A°° implies

C0(AU (—C)) € To(A—-C) C cl(A* -C). (2.4)
On the other hand, A°° being a convex set that contains the origin and C being a convex
cone, we derive for each a € A*° and y € —C that

a+y= nIi)mOO ((1 — %) a—+ %(ny)) € TO(A° U (-C)) .

This shows that cl(A°° — C) € To(A°° U (—C)). Combine this inclusion with (2.3) and
(2.4) to deduce (i).
To prove (ii) it suffices to use (i) and to observe the equality

(A°NCH)° = to(AU (-C)),

which is true forany AC Y. O

Proposition 2.3 For any subsets A;, Az € A, the following assertions are equivalent
(1) 9a; = 9p,.
(if) To(A; — C) = To(A2 — C).
(i) A;nCt=A3NCT.
(iv) cl(Aj° —C) =cl(A® - C).
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Proof Letus denote by o(Y’, Y) the weakest locally convex topology on Y’ for which all the
linear functionals (y, .), y € Y, are continuous. Then, the equivalence between (i) and (iii)
follows from Proposition 2.1 (i) and from the fact that two convex sets, that are closed with
respect to o(Y’, Y), coincide if and only if their support functions coincide (see [7]). The
equivalence between (ii) and (iv) is derived from Lemma 2.2. Now we prove the implication
(if) = (i). For this, it suffices to observe that for & € A one has

sa (&) =Ssoa—o) ), 1=1,2

Finally, the implication (iii) = (iv) is obtained from Lemma 2.2 (ii). ]

Corollary 2.4 Assumethat Ae Aand AC 2 C Y. Then
9a = 9Aa-c = 92na-c) = Jo(A-C) = 92nco(A-C)-

Proof Since sa(§) = sa—c(§) = Swoa-c)(§) for each & € A, one has ga = ga—c =
Oco(A—C). Furthermore, the inclusions AC 2N(A—-C) C A—Cimply A° 2 (2N (A—
C))° 2 (A — C)°. The latter inclusions and Proposition 2.1 (i) yield

gA(Y) = dna—c)(Y) = 9a-c(y), VyeY

and equality follows. ]

Corollary 2.5 Let Ag, Ay € Aand A1, Ay C 2 C Y. Thefollowing assertions are equiva-
lent

(1) 9a; = 9a,-
(i) 2N (AL —C) =N to(A, — C).
If inaddition A; and A, are convex compact, then the above is equivalent to
(iii) AA—C=A—C.

Proof The implication (i) = (ii) follows from Proposition 2.3, while the implication
(if) = (i) is obtained from Corollary 2.4. The last part of the corollary is immediate because
A; — C and A, — C are convex closed. O

We recall that the nondecreasing hull of u: Y — Ris the function y — G(y) := inf{u(x):
x € y + C}, which actually coincides with the infimal convolution of u and of the indicator
function i _¢ of the set —C, namely 0 = ullic.

Proposition 2.6 Assumethat Y isreflexive and that A € A isbounded. Then ga coincides
with the nondecreasing hull of the support function sae.

Proof Since A is bounded, one has 0 € int A°. Then
ga = Sacnc+ = (iae +ic+)  =sp Di_c .

Here (i ac + ic+)™ is the conjugate of two convex functions and the last equality is obtained
due to the condition dom ic+N int(domiac) # 9. ]
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3 Duality

Throughout this section we shall make the following assumption:
f (X) is a bounded set with f (X) NintC # @. H)

This assumption implies the existence of some &, € A such that s¢(x)(£,) > 0 . Denote by
Ap C A the family of nonempty bounded subsets A C Y satisfying

f(X) S AC{&,/stx)(ED}°.

For each A € Ay, consider the following problem called a scalarized problem of (VP) (see
[8, 10, 11, 20] for other kinds of scalarized problems):

max sup w
g SAG) (Pa)
st. xe X,

The following result shows the importance of this particular scalarization.

Theorem 3.1 Under hypothesis (H) one has

(i) the optimal value of problem (Pp) isequal to 1;
(ii) every optimal solution of (Pa) is a weak efficient solution of (VP) provided that A is
weakly compact and that 0 < SUPge A SA(E) < +00;
(iii) everyweak efficient solution of (VP) isan optimal solution of (Pa) provided A = f (X)
and f (X) — C isa convex set.

Proof Let us denote v(Pa) = SUPyex £ A (i:(g)), which in fact is the optimal value of

(Pa). We note that f(X) < A implies stx)(§) < sa(&€) for each & € C* and by this

v(Pa) < 1. On the other hand, A C [Sf(f)*(g )}O yields sa(&,) < sf(x)(&,) and therefore

v(Pa) > 1. Consequently, equality v(Pa) = 1 is obtained.
Furthermore, by an argument similar to that in the proof of Proposition 2.1, one veri-

fies easily that the function y — SUP£e A g—(?) is increasing on Y. Consequently, optimal

solutions of (Pa) are weak efficient solutions of (VP).

For the last assertion, let xo € X be a weak efficient solution of (VP). Then (f (X) —C)N
(f (x0) +intC) = @. Separating these convex sets we find some nonzero vector & € Y’ such
that

(&, T(X)) < (&, f(xg)+c) forall xe X and ceintC.

This implies, in particular, that £ € C* \ {0} and so we may assume that £ € A. Moreover,
(&, T(X0)) = sa(&). Therefore, in view of (i) the point xg is an optimal solution of (Pa). O

We notice that the convexity required in the above theorem is satisfied when X is a convex
setand f is concave in the sense that f (tx; + (1 —t)x2) —tf(x1) — (L —t) f(x1) € C for
any t € [0, 1]and forall x1, x2 € X. Itis known that most useful constructions of duality for
vector optimization problems lead to problems whose data are set-valued functions (see [12,
13]). To avoid this complication, we find a dual for the scalarized problem (Pa) instead. The
main difficulty is that even when the set X is convex and the function f is concave, (Pa) is no
longer a concave maximization problem. Therefore, the usual Fenchel-Moreau—Rockafellar
duality approach of convex analysis is not suitable to our case. The construction below is
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much inspired by the approach of Toland’s dualization (see [17, 19] related to the duality
in optimization of the difference of convex functions). First observe that by hypothesis (H)
problem (Pa) can be written as

max ga o f(x), ,
st. x e X, (Pa)
which, in view of Proposition 2.1, is expressed in the form

max Saenc+ o f(X),
st. xeX

We exchange the suprema in this latter problem to obtain the dual of (Pa):

max st x) (&),
st. Ee A°nCt. (Qn)

It is clear that there is no gap between the optimal values of (Pa) and (Qa), which is a
common feature of Toland type duality. Thus, in view of Theorem 3.1, the optimal value
v(Qa) of the dual problem is equal to 1 too. The question that remains is how optimal solu-
tions of (Pa) are linked with optimal solutions of (Qa). Before tackling this question, let
us give an example to illustrate the construction of a scalarized problem and its dual. Let
Y =R?, C=R%, and let

X ={(x.%) eRExZ+x5 <} x4 >0, x>0},

A={0ax) eR%0<x1 <3, 0<x <3}
Let f: X — R? be the identity function. The dual cone C* coincides with R2 and the

standard simplex A = {(&1, &) € Ri: & +&, = 1} can be used as a base of C™. The support
function s satisfies

sa(§) = 3 forevery £ e A.
The problem (Pa) is written as

max supg, £,)e A 2(61%1 + §2X2).
st (X1, %) € X,

which is simplified as

max max{2xi, 2X»},
st (X, x2) € X

because &1 x1 + &, X2 isalinear function of & € A for every fixed (X1, x2). In order to construct
the problem (Qa), let us compute the polar of A:

A° = {(&1, &) € RE E1x1 + &% < 1, ¥ (X1, %) € A}
={(1.6) eR: £ +6 <2 £ <2 & <2}
The support function s (x) is given by

JE+&

St(x) = SU;P([€1X1 + &%) = >
Xe
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The dual problem (Qa) is then written as

[e2 s2
max §1+6;

2 E)
St & 48 <2, & <2and & < 2.

Observe that in this example, (Pa) is a maximization problem over a convex set X while
(Qna) is a maximization problem over a polytope of the dual space Y’.

As promised, let us now derive a relationship between solutions of problem (Pp) and
those of (Qa). Consider the following auxiliary problems

max (&, f(x)),
st. £e A°NnCt (P

for a fixed x € X, and

max (&, f(x)),
st. xe X

(Qg)

forafixedé € A°NCT.
Recall that the normal cone to a convex set K C Y ata € K is defined by

N(K,a)={EecY:(,y—a) <0 foreveryye K} .

Below are some optimality conditions for problem (Px) and (QS)' The notation dh stands
for the convex subdifferential of h.

Proposition 3.2 The following assertions hold:

(i) v(Pa) =supuv(Px) and v(Qa)= sup v(Qg).
xeX SEA"QC*
(ii) £ € A° N CT isan optimal solution of (Py) if and only if thereissomey € —C such
that (£,y) =0 and f(x) —y € N(A, &).
(iii) Assumethat X isconvex and f isconcave and continuous. Then x € X isan optimal
solution of (Qg) if and only if

—NX, X) N d(—Eo F)(X) £ 0.

Proof The first assertion is immediate from the definitions of the problems (Pa) and (Qa).
For the second assertion, we note that the problem (Py) is a linear problem, sothaté € A°NC™
is an optimal solution if and only if f(x) € N(A° N C™, &). Since A is bounded, one has
0 eint A° and

N(A°NCH, &) = N(A°, & + N(CT, &) = N(A%, &) + (—C) N {&}+,

where {£}+ consists of vectors a € Y such that (¢, a) = 0. This proves (ii).
When f is a concave function, the problem (Qé) is a concave maximization problem so that
x € X is an optimal solution if and only if

0ea(—( () +ix(X) .
Since f is continuous, we obtain
0€a(—(& FONHMX) + NX, x)
which implies (iii). O
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A duality relation between the optimal solutions of (Pa) and those of (Qa) is given next.

Theorem 3.3 The following assertions hold

(i) Ifx € S(Pa) and & € S(Py), then & € S(Qa).
(i) If&Ee S(Qa) and x € S(Qé:), then x € S(Pa).

In both cases,
v(Pa) = v(Py) = (f(X), & =v(Qx) =v(QAa) . (3.1)

Proof Assume that x € S(Pp) and & € S(Py). Then it is clear that v(Pa) = v(Px) and
v(Pa) = (f(X), &) because & € S(Px). Moreover,

(f(), 8 =v(Qg =v(Qa) .

According to Theorem 3.1, we deduce equalities (3.1) which show that & € S(Qa).
Assertion (ii) is proved in a similar way. ]

The expressions of the solution sets S(Pa) and S(VP) given in the two corollaries below
are helpful in development of numerical methods for solving problem (\VVP).

Corollary 3.4 Assumethat either of the following conditions holds:

(i) AandC arepolyhedral;
(i) 0 eintco(AU (—0)).

Then one has

SPa= |J S@Qp = [J txeX:(fr0,8=1).
§es(Qa) §es(Qn)

Proof According to Theorem 3.3, it suffices to show that if x € S(Pa), there exists & €
S(Qa) suchthatx S(Qée). Indeed, consider the linear function &€ — (£, f(x)) on A°NCT,

Under (i), the set A° N C™ is polyhedral, while under (ii) it is bounded. Thus, in both cases,
there exists some £ € A° N C™ such that

(& 1)) =v(P) = v(Pa) =v(Qa) = v(Qg) = (§, F(X)),
which shows that x € S(Qs). The second equality follows from the first equality, Theorems

3.1and 3.3. O

Corollary 3.5 Assume that A is weakly compact and that f (X) € C is bounded, closed
with f (X) — C being convex. Then

sSvPy = | (xeX ( foo) =1}
£eS(Qr(x)

Proof Invoke Theorem 3.1 and Corollary 3.4. ]
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4 Convergence

According to Theorem 3.1, in order to obtain all weak efficient solutions of the problem
(VP) with help of the scalarized problem (Pa), we have to compute the function ga with
A = f(X). A practical way to do it is to approximate f (X) by a sequence of sets having
simple structure, say a sequence of polytopes Ay, and then construct ga, . Our goal is to show
that the functions ga, converge to ga when Ay tends to the set f(X) in a suitable sense.
Throughout this section we assume that A is bounded and denote & := supg.  [8]]. Given
two nonempty closed subsets A, A2 C Y, the Hausdorff distance between them is defined
by
h(AL, Ap) =inf{t > 0: Ay C Ay +tB, Ay C A, +tB]},

where B denotes the closed unit ball in Y. Let {Aq}2°; < Y be a sequence of nonempty
closed sets. Its upper limit and lower limit in the sense of Kuratowski and Painlevé are defined
as
limsup An := (_Iim an an € Ay, i = 1,2,‘..],

I —00

n—o0

liminf Ay := {nlim an:aneAn,n=1,2,...}.
— 00

n—o00
We say that this sequence H-converges to a closed set A if
lim h(An, A) =0,
n—oo
and KP-converges to A if
limsup Ay € A C liminf A,.
n— 00 n—oco
For more on convergence of sets see [1]. For a nonempty set A C Y, together with the polar
set A° we shall consider two other polar sets:
Al:=(tecY:(ta) <—1 forall ac A}
A" :={£eY:(a) <0 forall ac A}
Itis evident that A=l € A~ € A° and when A~1 is nonempty, the cone A~ is nontrivial and
the set A° is unbounded. Direct verification gives the following formula to compute the polar

set of the sum A+ ¢B. Let A C Y be nonempty and let ¢ > 0, then the polar set (A + ¢B)°
is the set

§ 3 1 1 _ 1
7:S€A°]U{7:S€A N> — U e AT S =—1.
(1+SII$II el -1 € €
Below are some elementary properties of polar sets that we shall need in the sequel.
Lemma4.l Let {An}n2,; beasequence of closed setsin Y. The following assertions hold:
(1) No AL = (U, An)°.
(if) (N1 An)° =T0o(Up2; A7) provided the sets A, are convex closed and contain O.
(iii) If {An}p2; H-convergesto A, then for every positive number r, the sequence { A; N
(r B)}52 4 H-convergesto A°N(r B). Ifinaddition0 € intA, then { A3} ; H-converges
to A°.
Proof The two first assertions are known (see [7], p. 113). The last one is obtained from the

formula to compute the polar set of the sum A + ¢B, which we have presented before this
lemma. O
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Theorem 4.2 Let {An}2; bea sequence of closed sets H-converging to a closed set A with
0 € int(A — C). Then {ga, }no; Pointwise convergesto ga.

Proof Observe first that the sequence {(A, — C)}2 , H-converges to the set A— C. Accord-
ing to Lemma 4.1, the sequence of polar sets {(A, — C)°}n2; H-converges to (A — C)° too.
Furthermore, as (A, — C)° € C™, by applying Proposition 2.1 (i) and Corollary 2.5, we
derive that ga, = Sa,—c)> and ga = Sca—c)o. The boundedness of the set (A — C)° and the
H-convergence of the sequence {(A, — C)°}52, imply that {sia,—c)e(Y)}a; converges to
Sca—c)e (y) for every y € Y. The proof is complete. ]

This theorem can also be derived from the following estimate of the function ga.
Lemma4.3 Assumethat A1, Ay € Awith A; C Ay + ¢B for some e > 0 and that
epn, ;= inf sp,(§) > 0.
Ao o Ay (&
Then for everyy € Y,

e8?|ly|l
(eAz)Z .

aa (Y) = da,(y) —

Proof \We observe first that
Say+eB (&) = Sp, (§) +¢&|| foreach&e CT .
Hence for each y € Y, one has

Ey*t et o EnT
SpE)  Smp+eB(8) T Sa(8) +elléll

2 & nto ellElI(E, y) " 2 & nto e8|y
Tosp () Sa(5)(sp(8) +llElD) T say(8) (ea)?
This implies
Ga¥) = gro(y) — 21
(eap)
as requested. O

Corollary 4.4 Let {An};2, < A be asequence of closed sets H-converging to a closed set
Awithea > 0.Then {ga,}o 4 pointwise convergesto ga.

Proof We observe that for each ¢ > 0, there is some ng > 1 such that A, € A+ ¢B and
A C A, + ¢B for n > ng. According to Lemma 4.3, we derive

es|lyll 1 1
9a,(Y) = 9a(y) — = 0a(Y) = &8llyl| ——3 + :

(ea)? (ea))?  (ea)?
It is clear that ea, —> ea asn — oo. Hence limp_, o0 ga, (Y) = ga(y). O

Itis worthwhile noticing thatea > Oifand only if 0 € int(Co(A—C)). Thisand Corollary
2.5 show that Theorem 4.2 and Corollary 4.4 can be derived from each other. We obtain a
convergence property for solutions of scalarized problems and of dual problems.
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Corollary 4.5 Let {An}°; < A be a sequence of closed sets H-converging to a closed set
Awith0 € int(A — C). Then

limsup S(Pa,) € S(Pa),

n—oo

limsup S(Qa,) € S(Qa).

n—oo

Proof This follows immediately from Theorem 4.2. O

We now study the convergence of e-solutions of scalarized problems. Given ¢ > 0, we
say that xp € X is an e-solution of problem (P,) if

gao f(Xg) +&>gao f(x) forevery x e X.

The set of all e-solutions of (Pj) (hence of (Pa) as well) is denoted by S (Pp).
Proposition 4.6 Let {An};2; < A be a sequence of nonempty, closed sets, which
H-convergesto a closed set Awith 0 € int(A — C) and let X be compact. Then
S(Pa) € Ne=o |inm inf S (Pa,).
— 00

If in addition the sequence { An};2 ; is monotone (either increasing or decreasing by inclu-

sions), then for every ¢ > 0 thereis someng > 0 such that
S(Pa) € S(Pa,) for all n>ng
and in particular

n_)lgon’wgw h(S (Pa,), S(Pa)) = 0.

Proof The first inclusion is evident. For the second part of the proposition, assume that
the sequence {An}22, is monotone. Then the sequence {A;, N CT}2 , is monotone too. By
Proposition 2.1 (i), the sequence of scalarizing functions {ga,};2; is monotone. In view of
Theorem 4.2, this latter sequence pointwise converges to the continuous function ga. By
hypothesis, the set X is compact, we deduce that the sequence {ga, o f}72,; uniformly con-
vergesto gao f on X. Now, let e > 0 be given. As the set S(Pa) is compact, there isng > 0
such that |ga, o f(X) — ga o f(X)| < & for every n > ng and for every x € S(Pa). Using
Theorem 3.1, we derive

ga, 0o fF(X) >gao f(X) —e>1—c¢,
which means that X € S (Pa,) for n > ng and x € S(Pa). This in particular implies
S(Pa) € n'_')“;'gzo S (Pay).
We now show that

limsup Se(Pa,) € S(Pa).

n—o00,£0
Let X = liMn; —o0,6; 10 Xn.&; Where X, i € S (Pa, ). Then in view of Theorem 3.1, we
have
JAy © f(Xnj,) >1—¢ forall i >1.

By the uniform convergence of the sequence {ga, o f}52; t0o gac f on X we conclude
ga o f(X) > 1. Again by Theorem 3.1, x € S(Pa). In this way, the generalized se-
quence {Se(Pa,)}n>1.6=0 KP-converges to S(Pa). These sets being compact, we obtain
H-convergence as well. O
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5 Generating the solution set of problem (VP)

In this section we shall apply the analysis developed in the previous sections to solve a
concave maximization problem in a finite dimensional space. Let us consider the problem:

WMax f(x),
st. xeX, (VP)
where X is a nonempty subset of R", f = (fy, ..., fy) isamapping from R" to R™ and R™

is equipped with the positive octant cone R. We are interested in finding all weak efficient
solutions of the problem, namely the set

S(VP) = {x € X: (f(X) — f(x)) N int R =@} .
Given ¢ > 0, we say that xg € X is an e-solution of (VP) if
fOONIFx) + (e, ..., )]+ intRT) =0.

The set of all e-solutions of (VP) is denoted by S¢(VP). The standard simplex

m
A= ‘€=(515"'!§m) GRT:ZSi =1]

i=1

will serve as a base of the nonnegative polar cone R'. We shall make use of the notation

A® = (A—RT) NRT for A< RT and assume throughout the following hypothesis:

f(X) C intR and the set [ f(X)]® is nonempty, compact and convex. H)

This hypothesis implies (H) and is fulfilled, for instance, when X is nonempty compact
and convex, f is continuous and concave. By setting A = [ f (X)]¢ we have f(X) € Aand
A® = A Let g4 be a function defined on R™ by

_ _ (&, Y)
galy) —gsgf‘ A

Itis clear that ga(y) = ga(y) for each y € RT'. Moreover, G is continuous, sublinear and
increasing (see the proof of Theorem 3.1).

Lemma5.1 Under the hypothesis (H’) and with A = [ f(X)]? one has S(Pa) = S(VP).
Moreover, for ¢ > 0, Xp € X isan e-solution of (VP) if and only if thereis some vector £ € A
such that xg is an e-solution of (QS)'

Proof That the sets S(Pa) and S(VP) coincide is immediate from Theorem 3.1. Now, let
Xo be an e-solution of (VVP). Then the set f(X) — IR{T which is convex according to the
hypothesis (H") does not meet the convex set f (xo) + (¢, ..., &) + intR. Separating them,
we find some & € A such that

(& (X)) < (& f(x0)) +¢

forevery x € X. This shows that xg is an e-solution of (Qg). Conversely, if X is notan e-solu-
tion of (VP), thentherearesome x € Xandc € intRT suchthat f (x) = f(Xg)+(s, ..., &)+C.
We derive for each & € A that

(& £00) = (& f(X0)) +e+ (&) > (& f(X)) +e

Hence xg cannot be an g-solution of (Qg). The proof is complete. O
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Proposition 5.2 Under the hypothesis (H’), one has
svp= | sQo= |J xeX:¢ foo)=1),
&ebd, (A°) §ebd, (A°)
where bd,; (A°) denotes the intersection of the boundary of the set A° with the octant R'}". In
particular, if Aisa polytope and I"is a set of those vertices of A° that liein R, then
S(VP) = | J{x e X: (& f(x) =1).
&l
Proof Since the solution set of problem (Qa) is included in bd (A°), Corollary 3.4 yields
sPac | s@p.
§ebd, (A°)

Moreover, for each nonnegative vector & € RT'\ {0} the function (&, -) is increasing, therefore
one has

S(Qg) € S(VP) .
The first equality follows now from Lemma 5.1. The second equality is derived from Theorem
3.1. The equality of the particular case when A is a polytope is then evident. O

In view of the above proposition, for generating the solution set of (VP) it suffices to
determine A° or more precisely bd;. (A°) and then solve the scalar problems (Qg). In what
follows we present an algorithm to solve problem (VP) by approximating the set A° from
outside. The idea is to start up with a polyhedron S > A° and to built up a sequence of
polyhedra

SO>SO D%D---D A%

This can be done by the dual relation between a polyhedron and its polar (see e.g. [6]) which
states that if two full-dimensional polyhedra P and S containing O are polar to each other,
then there exists a 1-1 correspondence between the set of facets of P not containing 0 and
the set of nonzero vertices of S.

Denote by q the vector (qy, ..., dm), where s, . . ., gm are the optimal values of the fol-
lowing problems

max fj(x),
s.it. x e X.

It is easy to see that the vectors y* = (qg, ..., 0),...,y" = (0, ..., gm) belongto [ f (X)]°.
Set

B1 = co{0, y*, ..., y™,

él = B; — RT,
S ={ecR™ (& Yy)<1 i=1,....,mnNRT,
S =5-RM
Denote by V; the vertex set of S which actually consists of the vectors
1
v=(v1,...,vm) Where v € [Oq—] i=1,....,m
i
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We construct Sc.1 by induction. Assume that S is known together with its vertex set V.
Define

Vi = {v € Vi sa(v) > 1}.
If Vi =0, we set S¢;1 = S. Otherwise define
Sa1=SNEeR™ (5 y) <1, vel),

where vy, is a maximum of the linear function (v, .) on A and

Si1 = Sq1—RY

Bi+1 = co(Bc U {yy: v € ),

Bir1 = By — R
Lemma5.3 For every k > 1 the sets By and By are polar to S and S respectively.

Proof We prove this lemma by induction on k. For k = 1, the conclusion is immediate
from Lemma 2.2. Assume that (B)° = Sc and (Bx)° = S for some k > 1. Notice that
Bk, Bk, S and S are convex polyhedra which contain the origin of the space. By polarity
and by induction we obtain
(S+1)° = (S N{EeR™ (& y) <L ve VD,

=TS U{EeR™ (£ y)) <1,ve ),

=C0(Bk U {y: v € D,

=Co((Bx —RT) U {y,: v € VYD),

=TO[Bx U {yy: v € VI —RT,

= co[Bx U {yy: v € VI —RT,

= Brs1 — RT = By
This implies (§1)° = (St — R = (S+1)° NRY = Bk N RT = Byy1. The proof
is complete. ]

Theorem 5.4 Under the hypothesis (H), the following assertions hold:

() Scrt € S )
(i) A°NRT C Scand A° = (A°NRY) —RT C S
(iii) 1f V& = ¢ for somek > 1, then § = A°.
(iv) The sequence (S22, H-convergesto A°.

Proof The first assertion is evident from the definition. We prove the first inclusion of (ii)
by induction. For k = 1, we have B; € A which implies A° C (B1)° =S5 =5 — RT by
Lemma 5.3. Hence

ANRTC(S-RHNRT =S§.
Furthermore, by the definition one has
A=[F(X)]° = (f(X) —RT) NRT =To(AU {0}) = A®°.
This yields
(A°NRT° = A —RT = A—RT,
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which in view of Lemma 2.2 gives
(A°NRT —RT = {(A°NRP°NRT} = A°.

The latter equalities and the first inclusion of (ii) show that A° € §..

We now assume V| = #1. Thismeansthat Vic € A°. Since Vk € R, onehas Vik € A°NRT
which implies that Sc € A° N R, In view of (ii) this latter inclusion becomes equality and
hence

A= A°NRT-RT =S -RT =&

To prove (iv), first we show that the sequence { By}, H-converges to A. Indeed, let y

A\ Bk. According to Lemma 5.3, there exist some v € & such that (v,y) > 1. Since
& = S —RM, thereare vy, ..., v € Vk, ¢ € RTand Ag,..., 4 > Owith >} 4 =1
suchthat v = 37! Ajvi — c. Then

|
D hli,y) =y > L

i=1
The vector y being positive, the value (c, y) is nonnegative. It follows from the above inequal-
ity that

(vi,y) >1 forsome ief{l,... 1}

Thus, for y € A\ By, there exists v; € Vi such that (vj, y) > 1. As the power of V is finite
we find some vg € Vk and y’ € B such that

(vo,y) =1, (vo,y)>1, y=(vo, YY"
Let us estimate the distance from y to By:
min fly —z| < [ly =Yl
zeBy
< IY'll({vo, y) = 1)
—1).
< (gﬂeag ||a||)($3§ sa(v) — 1)
Since this holds for any y € A\ Bk one deduces that

h(Bk, A) < (rggg IIaII)(p;g;kg sa(v) — 1).

On the other hand, for each v € V! one has
(v, o) = sa(v) > 1. (5.1)

Let vk € V| be such that maX,ev; Sa(v) = sa(vk) = (vk, Yy). Since the sequences {vk}2;
and {yy, J2, are bounded, without loss of generality one may assume that they converge to
v and y respectively. It follows from (5.1) that (v, y) > 1. By the construction of Sc;1, one
has (vk+1, Yo} < 1, therefore (v, ¥) < 1. As aresult

lim max sa(v) = (v, y) =1,

k—o0veV#
which implies that {By}2; H-converges to A and the assertion (iv) follows from Lemma
4.1. O
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5.1 Algorithm

Now we are in the position to present a new algorithm for solving problem (VP).

Sep 1. (Initialization). Choose a small ¢ > 0. Find g; as before and bj € R such that
g > fix) >bjforallx e Xandi =1,...,m. Setk=21andfori =1,...,m:

i) =fix)—b, g=a—h, y =qgae,
wheree, = (1,...,0),...,en=(0,...,1). Define
S=1{cRM:(gy)<li=1,...,m)

andset Vi = {v = (v1, ..., vm): Vi € {Oqil}l =1,...,m.
Step 2. For each v € V solve problem (P,):

max (v, y),
st ye[f(X)]°.

to obtain sa(v) and an optimal solution ;.
Sep 3. Set V¥ = {v e W:sa(v) >1+¢}.
If V¥ = ¢, then stop. Set

Ee = U{xe X: (f(x),v) > 1}
ve Vi

(see also comment 3 of Section 5.3). Otherwise, go to the next step.
Sep 4. Set

Sr1=SN{zeRM: (. yy) <1, v eV}
and find the vertex set k41 of Sc+1. Set k = k + 1 and return to Step 2.
The convergence of this algorithm is seen in the next proposition.

Theorem 5.5 Assumethat f (X) C int RL‘: and [ f (X)]¢ isanonempty, compact and convex
set. Then

(i) for agivene > 0 the algorithm terminates after a finite number of iterations and
S(VP) € Eg € S, (VP),

m
where 8 = 1/<minve\/k > vi);

i=1
(ii) if problem(VP) islinear, thenthe algorithmterminatesafter afinite number of iterations
with zero tolerance ¢ = 0 and

S(VP) = [ {x e X: (f(x),v) = 1}.

veVg

Proof It follows from Theorem 5.3 that at some iteration k we must have V| = ¢ and the
algorithm terminates after a finite number of iterations. Let x € S(VP). If f(x) € A\ B,
then as in the proof of Theorem 5.3, there are some v € Vi and y € By such that (v, y) =1
and f(x) = (v, f(X))y. Since (v, f(X)) > 1,0nehasx € Eg. Now let X € E¢. There exists
v € Vi such that (v, f(x)) > 1. It follows from the condition V| = @ that for all X" € X

(v, f(X)) =14+e< (v, f(X)+e. (5.2)
@ Springer



418 J Glob Optim (2006) 36:401-423

If x is not an edk-solution of (VP), one can find xo € X and ¢ € intR such that
f(xg) = f(X) + (&b, ..., &8) +C.
Then one has
m
(v, FO0)) > (v, FOO) + 88k D vi = (v, F(X0)) +e,
i=1

which contradicts (5.2). When (VP) is linear, at each iteration k (with ¢ = 0), the polytope By
contains new vertices of f (X). Since the number of vertices of f (X) is finite, the algorithm
terminates after a finite number of iterations. O

We would like to point out that when the algorithm terminates, in view of Theorem 5.5,
all elements of the set E¢ are sdg-solutions of (VP). Moreover, since A contains the origin
of the space in its interior, there is a positive y such that all coordinates of elements of Vj are
greater then y. Consequently, 8k is majorized by 1/(my) and &8k converges to 0 as soon as ¢
tends to 0.

5.2 Illustrative examples

We illustrate our method by two small examples. Consider the following biobjective pro-
gramming problem:

max(—(0.5(x1 — 1)? 4 (x2 — 5)%), —(x1 — X2)%)

st.xg >0,% > 0and X2 +x3 < 4.
First, we finday = —9.3756, ap) =0, b; = —26.0and by = —4.0. At the initialization
the polyhedron S is defined by

Si=(5eRy: () <L (5 y2) < 1),
where

y1 = (0,4.0000), Y, = (16.6244,0).
The vertex set V4 consist of three elements:

vo = (0,0), v =(0.0602,0), vp =(0,0.2500), v3 = (0.0602,0.2500).
By solving (P,) for each v, vy and vz, we obtain
sa(v1) =1, sa(v2) =1
and
sa(v3) = 1.8277, y;3 = (14.3313, 3.8624).

Itis obvious that Vj* = {v3}. The cut that uses y3 generates the polyhedron S with two new
vertices

v4 = (0.0024, 0.2500), wvs = (0.0602, 0.0357).
By solving (P,) for v4 and vs we obtain

Sa(vg) = 1.0670, y4 = (16.2179, 2.5611)
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and
sa(vs) = 1.0314, ys = (13.1245, 3.9997).
Two new cuts using ys and ys will generate the polyhedron S with three new vertices
v = (0.0602, 0.0095), w7 = (0.0502, 0.0727), wvg = (0.0207, 0.1821).

The first three iterations are illustrated in the Fig 1. With ¢ = 0.001 the algorithm terminates
after six iterations.

Figure 3 shows the set E¢ (Step 3) in the decision space which is an approximation of the
weak efficient solutions of the problem. This set consists of the intersections of the regions
bounded by elliptic upper level sets (v, f(x)) > 1 and the feasible region (the first quarter
disc)

(X1, %) €eRE0<x; <X, X2+ x5 =4}

Figure 2 illustrates the cuts performed in the dual space and the solutions of (P,) which
present an approximation of the weak efficient values of the problem.
The second example is the following problem with three criteria

max(—(0.5(x1 — 1)? + (x2 — 5)%), —(x1 — x2)%, —(x{ + %3))

st.xg > 0,% >0andx? 4 x3 < 4.
With ¢ = 0.001, the algorithm terminates after seven iterations and 33.98s. The final
results are exhibited in Figs 4 and 5 below.

45
LV, V.
0.25 — 3 Y, .
4 5 Y,
0.2 5 35
8
3
0.15 y
25 “
0.1 2
X
§ 15
0.05 v
Vé‘ . 1
0 v
Y 05
—0.05 " " " " " " i . 0 y').
—0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0 2 4 6 8 10 12 14 16 18

Fig. 1 Left figure presents the cuts and polyhedra S described in Step 4, and the right figure presents the
points obtained by solving (P,) (Step 2) and polytopes By
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Fig.2 Onthe left the straight lines present the cuts described in Step 4, and on the right the points y, obtained
in Step 2 give an approximation of the weak efficient values of the problem in the outcome space

Fig.3 The set Eg¢ obtained in 25
Step 3 is an approximation of the
weak efficient solution set in the
decision space
2
15
1
0.5
0

5.3 Comments

We close up this section by some comments on our algorithm.

1. The problem (P,) in Step 2 can explicitly be written as

m

min > i,
i=1

s. t. y >0,

fX)—y=>0, xe X
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. L 2.
Fig.4 The set Eg is given by 5

the intersections of the regions

bounded by elliptic upper level

sets (v, f(x)) > 1and the

feasible region 2
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Fig.5 The left figure presents the set E¢ (see Comment 3) which is the part of the weak efficient solution
set S(VP) and nicely distributed among Eg. The right figure shows the set of the points y,, v € V in the

outcome space

This is a problem of minimizing a linear function on a convex set when X is a convex set
and f is a concave function. In our examples, we solve (P,) by using the optimization

toolbox of MATLAB version 7.

2. InStep 4, the vertex set Vi1 can be derived from Vi by the method of [4]. Other methods
for numerating the vertices of a polyhedron can be used as well.

3. In Step 3, the computation of the set Eg is very costly when X and f have no particular
(simple) structure. In general, one finds some x, € X such that y, = f(x,) solves
Problem (P,) and stores the set Eg = {X,: v € Vi]}. This set is the best representative

part of the solution set S(VP) in the following sense:

@ Springer



422

J Glob Optim (2006) 36:401-423

(i) Ee < S(VP). R
(if) For each x € S(VP), there is some x, € Eg such that

(v, f(xp)) = (v, F(X))| <&,

where v is a vertex of the polyhedron & that approximates the polar of [ f (X)] from
outside. Indeed, (i) is obtained from the fact that the vector v is positive, hence the
function (v, .) is increasing on R™. For (ii), let x € S(VP). By Theorem 5.5, there is
v € Vi such that (v, f(x)) > 1. When the algorithm terminates, one has V/ = ¢, so
that (v, y,)) < 1+ ¢eforall v € Wk Lety, e [f(X)]® be a solution of (P,) and let
Xy € X be such that f (x,) = y,. Then

1+e> (v, T(x)) = (v, f(X)) =1,

which implies (ii).

The small value of ¢ to choose in the initialization step is the precision of the solutions
we wish to obtain by the algorithm. It allows us to stop the algorithm after a finite num-
ber of iterations. In general the number of iterations needed to generate the efficient set
depends heavily on the structure of the problem and on the value of ¢, so that it is very
difficult to determine an upper bound for this number when ¢ is given.

In a previous work [14] we have developed an algorithm, referred to as ALG 1 to solve
(VP) by building up a sequence of polytopes Ak to approximate A from outside. In
that algorithm the polytope A1 is obtained from Ay by cutting planes (v, y) < p,,
where v is the unit normal vector to A from a vertex of Ax. The algorithm of the present
paper, referred to as ALG 2, attempts to approximate from outside the polar set A° by
a sequence of polyhedra &. By polarity, the sequence of polars (&)° approximates the
set A from the interior. We notice, however, that ALG 1 is performed in the space of
outcomes R™, while ALG 2 is carried out partly in the dual space of R™. For this reason,
ALG 2 can be regarded as a primal-dual algorithm.

In [14] we have already discussed the advantages of ALG 1 over some existing algo-
rithms. It isworthwhile noticing that both ALGs 1 and 2 allow to obtain a set of e-solutions
which contains the set of exact solutions after a finite number of iterations with a given
¢ > 0. This property is not guaranteed by most existing algorithms. For instance by using
the normal-boundary intersection method of [5], it is impossible to choose a finite set of
CHIM simplex in order to obtain an approximate solution set within a small tolerance
(see Section 5.4 of [14]).

From the computational point of view, both algorithms ALGs 1 and 2 have a common
feature at each iteration: solve optimization problems over the set [ f (X)]®. However,
the objective functions of ALG 1 are quadratic functions, while the objective functions
of ALG 2 are linear. This shows that ALG 2 requires less computation time than ALG
1 does. A detailed comparison of numerical results of these two algorithms and some
others is beyond of the scope of this paper and will be addressed in a forthcoming report.
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